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Growth of a debonded void at a rigid 
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When a ductile two-phase material is subjected to a high strain-rate deformation, the 
secondary particles nucleate voids, which will grow and coalesce, in a viscous matrix, 
leading to a dynamic ductile fracture. If the secondary particle is strong, the void 
nucleates at the matrix-particle interface and will grow without the shattering of the 
secondary particle. In this paper the growth of a debonded void at the secondary particle 
in a viscous metal has been studied theoretically in order to simulate the dynamic ductile 
fracture of two-phase materials. It has been assumed that the matrix is viscous and that 
the second-phase consists of randomly-dispersed rigid spherical particles. The analytical 
technique used in our study is a combination of the equivalent inclusion method of 
Eshelby and the back stress analysis method of Mori and Tanaka, by which the inter- 
action between debonded voids are accounted for; hence the results presented are valid 
even for large volume-fractions of debonded voids. The theoretical results obtained in 
this study are compared with those for the case of complete voids nucleated by the 
shattering of weak particles. 

1. Introduction 
If  the material of a structural element which is 
ductile is subjected to a high strain-rate defor- 
mation, the resulting failure mode will be dynamic 
ductile fracture. The ductile fracture of most com- 
mercial materials is due to secondary particles that 
nucleate voids, which subsequently grow and 
coalesce upon straining. The understanding of the 
mechanism of dynamic ductile fracture of materials 
is much less complete than that of brittle and 
quasi-plastic failure. It is understood, however, 
that there exist two kinds of modes for void 
nucleation: the shattering of weak particles and 
the debonding of the interface between the matrix 
and strong particles. The former case leads to the 
formation of a complete void, and the latter to 
that of a debonded one. It is also known that the 
ductile metals, such as copper and aluminium, 
subjected to a high strain-rate deformation, 

= 104 sec -1 or more, become viscous: 

a = o ~ + ~ ,  (1) 

where o is the flow stress and a and ~ are constants 

for a certain range of ~ and flow temperature 
[1,21. 

Recently, Taya and Seidel [3] and Budiansky 
et al. [4] have theoretically investigated the growth 
of complete voids in a viscous metal. The inter- 
action between voids, which will be enhanced as 
the volume-fraction of voids increases, has been 
taken into account in the work of Taya and 
Seidel [3]. However, Budiansky etal. concen- 
trated their attention on an isolated void in an 
incompressible matrix; hence, the results obtained 
exaggerate the void growth for the case of uniaxial 
strain and lower it for the case of uniaxial tension, 
compared with those by Taya and Seidel [3]. 

In this paper the growth of a debonded void at 
the interface of a strong particle and a viscous 
matrix (e.g., Cu-SiO2) under high strain-rate 
deformation is considered. In order to facilitate 
our computation it was assumed that the strong 
particle is spherical and rigid, and also that the 
matrix follows the behaviour of a viscous fluid 
under a constant strain-rate (e =/3d) hence intertia 
effects could be neglected. The analytical technique 
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used in this study is similar to that used in [3] 
i.e., the equivalent inclusion method of Eshelby 
[5] and the back stress analysis method of Mori 
and Tanaka [6]. According to the Mori-Tanaka 
method the interaction between debonded voids 
can be accounted for by an average back stress 
which can be evaluated in terms of eigen-strains 
[7]. 

A theoretical formulation of the growth of a 
debonded void is described in the next section. 

2. Formulation of the theory 
Consider an infinitely viscous body, D, which 
contains spherical, rigid particles of uniform size 
and which is subjected to uniaxial tension along 
the X3-axis. Upon straining, the interface between 
the matrix and the strong particle is debonded and 
a debonded void will grow, as shown in Fig. 1. It is 
assumed that all of the debonded voids grow 
simultaneously, and that the matrix is both 
isotropic and incompressible. To make the applied 
stress a uniaxial tension, we apply the following 
strain-rate at infinity: 

e33 = eA, eaa = e22 = YeA, ( 2 )  

where e A is the prescribed constant strain-rate 
during the growth of debonded voids and v is 
Poisson's ratio of the matrix which is set equal to 
0.5. We will formulate the associated problem in a 
general form, i.e., without using v = 0.5, and then 

simplify the results by assuming incompressibility 
of the matrix. 

Let the domain of the debonded voids be 
denoted by ~2 and then the domain of the matrix 
becomes D -- ~2. The average of the stress distur- 
bance due to all ~2 is given in the matrix by [3, 
6, 7] 

(alpm = Gm~kz, (3) 

where ( )  denotes the volumetric average of a 
given quantity and Cijm is an isotropic viscosity 
tensor and is given by 

C~jkz = ;kS~iSm +/~(8~kS~z + 8u81k). (4) 

The symbols 9~ and /~ in Equation 4 correspond 
to the Lamd constants of an isotropic elastic 
material. ~m in Equation 3 is the average strain- 
rate in the matrix disturbed by all ~2. (otis) m and 
eij are unknown and will be determined later. 

It is noted that for a debonded void envelop- 
ing a rigid spherical particle, the actual stress 
along the X3-axis and strains along the X1- and 
X~-axes vanish; in fg 

and 

~ = o (5) 

e A = e~ = 0, (6) 

where the superscript A denotes the actual 
quantity. Using the equivalent inclusion method of 
Eshelby [5-7] ,  Equations 5 and 6 are reduced to, 
respectively, 
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Figure 1 A theoretical model for the growth 
of a debonded void in a viscous metal 
subjected to the applied strain-rate, e~ 



@3 = C3am(e~l + ekl + e'm -- e~z) = 0 (7) 

and 

eA1 = e~ + ell + e'll = O,  (8) 

where eli is the strain-rate disturbance from intro- 
ducing a single ~2 into D, and eij is the eigenstrain 
defined only in fZ, i.e., eij= 0 inD -- s If~2 is an 
ellipsoid, then eij is related to ei3 [5] by 

ely = Sijkle~l (9) 

where $ijm arc the Eshelby tensors and they arc 
a function of Cim and the geometry of the ellip- 
soidal inhomogeneity, g2. Since fD ofjdv = 0  
[3, 6, 7], then 

(1 --f)<oij>m + f<aij>a = O, (10) 

where f is the volume-fraction of debonded void, 
and <oo>a is given by 

<aij>a = Qjm(ek~ +Fm -- e~l). (11) 

In the derivation of Equation 11, the present 
authors have used 

= c ,  ik eg , 02) 

in D, where a ~ is the uniform stress. The system 
shown in Fig. 1 gives rise to transverse isotropy 
and hence there are only two unknowns for each 

* * * for field variable (for example, ea3 and ell = e22 
the eigenstrains). After having eliminated eij in the 
above equations by use of Equation 9, there are 
four unknowns, e~l, e~3, e'11 and e33 which can be 
solved by use of Equations 7 to 10. The rate of 
the debonded void growth can then be expressed 
in terms of k/c as 

- -  = e~ + e33 + Fa3, (13) 
C 

where c is the length of the current major axis of 
the ellipsoid (see Fig. 1). 

Having solved for e~ and e~/j and used Equations 
9 and 13, then 

-- = QeA, (14) 
C 

where 

Q = 1 +A1S3333 -]- 2(1 --f)A2S3311 

In Equation 15, the detailed expressions for A1, 
A2, A3, $3333 and $3311 are given in the Appendix, 
after Poisson's ratio, v = 0.5, is substituted. Since 

O changes with time t, Equation 14 is integrated 
incrementally to obtain 

Ci+ t = C~ exp (QeAAt), (16) 

where At = ti+l --t i  and the subscript i denotes 
the ith increment. It is noted that the iength of the 
minor axis of the debonded void remains constant 
due to the rigidity of the spherical particle. 

3. Results and discussion 
In order to simulate the growth of a debonded 
void in a ductile metal deforming at a constant 
high strain-rate (for example Cu-SiO2), the 
following data were used: 

e A = 104 sec -1, 

eat r = 0.4 

and tf = 4 x 10 -s sec, 

where t r is the duration of the applied strain-rate 
% .  Three values for the volume-fraction of 
debonded voids were used, f = 0.05, 0.1 and 0.3. 
500 incremental steps were used to compute the 
current length of the void major axis, c. The 
growth of a debonded void is expressed in terms 
of In (V/Vo), where V and Vo are the void volume 
at the current and initial stages, respectively. The 
values of in (V/Vo), plotted as a function of the 
applied strain eAt , are shown by the solid curves 
for the cases o f f =  0.05, 0.1 and 0.3 in Fig. 2. 
Also in Fig. 2, values of In (V/Vo) for the case of 
a complete void (without rigid particle) are plotted 
by the dotted curves [3]. It is clear from Fig. 2 
that the growth of a debonded void is faster than 
that of a complete void. The volume-fraction of 
the second-phase particles, f ,  can be used as 
approximately that of the voided particles. Hence, 
it follows from Fig. 2 that the larger the volume- 
fraction of secondary particles, the faster the 
growth of a debonded void. The above conclusion 
can be also applied to the case of complete voids 
nucleated from the weak particles. The fact that 
the growth of a debonded void is faster than that 
of a complete void is due to the rigidity of the 
particles. To illustrate this, the natural tensile 
strains along the major [In(c/Co)] and minor 
axes [ln(a/ao)] have been plotted in Fig. 3. 
The solid and dotted curves in Fig. 3 correspond 
to the cases of debonded voids and complete 
voids, respectively. The assumption that the 
strong particle is rigid yields in (a/ao)= 1 at any 
level of straining, whereas In (a/ao) for the case 
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Figure 2 The logarithmic volume change 
In (V/Vo) of a debonded (solid curves) 
and complete void (dotted curves) [3] 
against the applied strain eat. f is the 
volume-fraction of the voids. 
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of voids decreases as the applied strain eat  
increases. A strong particle such as SiO2 actually 
behaves elastically, but its transverse contraction 
along the Xa- and X~-axes in Fig. 1 can be negligible 
compared with the longitudinal strain, in(c/co), or 
the transverse strain In (a/ao), of a complete void. 

The constant, a, in the stress-strain equation 
of a ductile metal deforming at high strain-rate, 
a = a +/3~, has no influence on the growth of 
debonded voids for the following reasons: the 
problem of the growth of debonded voids can be 
solved by combining the solutions of two cases, 
(a)an infinite body (without debonded void) 
subjected to uniaxial homogeneous tension along 
X3-axis, a, and (b)an infinite body containing 
debonded voids, within which the actual stress is 
prescribed as ~ = -  c~, and subjected to uniaxial 
tension. The second problem has been solved to 
obtain the expression of the void growth which 
has the same form as Equations 14 and 15 except 
that the terms carrying ot in the expression of Q 
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are multiplied by (1 - -2v)  and vanish upon the 
substitution of v = 0.5. 

Next the validity of the present model is 
examined. For short deformation times (infini- 
tesimal deformation), the present model gives rise 
to the compressive stress a A at the initial stage, 

3 (1 + 5v) 
T 10 (1 + v) ' (17) 

where 
T = 2(1 + v)pe~ (18) 

Upon substitution of v = 0.3, we obtain oA/T  = 
--0.577,  while the corresponding result obtained 
by Wang [8] is -- 0.378. The above discrepancy is 
due to the assumption in the present model that 
the void with a rigid particle is treated as a strong 
anisotropic inhomogeneity (Equation 5), and the 
contact region in the present model is smaller than 
that in [8]. Hence, the present model should not 
be used to predict the contact stress during the 
infinitesimal deformation of the void, but it should 
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Figure 3 The natural strains along the 
major [In (C/Co)] and minor axes 
[ln (a/ao) ] of the void against the applied 
strain eAt. The solid and dotted curves 
correspond to the cases of a debonded 
and a complete void for f =  0.1. 

be focused on the finite deformation of the void, 
which without the present model would have been 
extremely difficult to solve. As far as the present 
authors are aware, no attempt has been made to 
measure experimentally the void growth of a two- 
phase metal under a very high strain-rate defor- 
mation with the state of uniaxial tension, except 
for the quasi-static case studied by Palmer and 
Smith [9]. Palmer and Smith observed the growth 
of a debonded void in Cu-Si02 under a quasi-static 
uniaxial tension. It is noted in [9] that the growth 
of the debonded voids near the fractured surface 
of Cu-Si02 is somewhat similar to that predicted 
in the present study, i.e., C/Co, in Fig. 15 of [9] for 
the failure total strain 0.27, is about 2.0, whereas 
that predicted by the present model is 1.6. It is 
believed that the present results remain to be 

verified by a well-defined dynamic test where the 
applied strain-rate is kept as constant as possible. 

4. Conclusions 
The growth of debonded voids nucleated at rigid 
secondary particles in a viscous metal was studied 
theoretically in order to simulate the mechanism 
of a dynamic ductile fracture of a two-phase metal 
containing strong particles. The results are com- 
pared with those of a complete void nucleated at 
the weak particle, and have led to the following 
conclusions: 

(a) The growth of the major axis of a debonded 
void, c, is slightly larger than that of a complete 
void, but the rate of the volume increase of a 
debonded void, In (V/Vo) is much larger than that 
of a complete void. 
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(b )The  larger the volume-fraction of the 
secondary particle, the larger the void growth 
becomes.  

(c) The constant a in the matrix stress-strain- 
rate relation has no effect on the growth of a 
debonded void. 
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Appendix: A1, A2,  A3,  S3333 and  S3311 
We will give below explicit expressions for A1, 
A2, A 3, Saaa3 and Saan separately for spherical and 
ellipsoidal g2. In the evaluation OrAl ,  A2 and A3, 
we express A1, A2 and A3 formally in terms of  
Slim, f and Poisson's ratio v. Then, after having 
cancelled out the common factor, (1 --  2v), in the 
numerator  and denominator we substitute v = 0.5 
to obtain the final results o r A l ,  A2 and A3. 

A.1. Spherical 

A1 11 
- -  1 0 ,  

21 
A2 

4(5 + 9 f ) '  

A3 = } & ,  

and 
$3333 - 5 3 

53311 1 

(A1) 

(A2) 

A.2. Ellipsoidal s (the major axis 
along X3-axis) 

A1 

Z 2 

A3 = 

2/32 3 [32 
S3333 = 1 + ( / 3 2 _ 1 ~  2 ( f l2_ l ) /O  (A6) 

and 
1 3 1 

S3311 - -  (/32__ 1 1 )  4 4 ( / 3 2 _  1)1o, (A7) 

where 
_ 2/3 1)1/2 

Io (/32 __ 1)3/: (/3(/32 _ __ cosh-I/3) 

(A8) 
and 

C 
/3 = -- .  (A9) 

a 
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